CELL BIOLOGY Nitrogen dioxide induces apoptosis and proliferation but not emphysema in rat lungs
نویسندگان
چکیده
Background: Apoptosis of alveolar septal cells has been linked to emphysema formation. Nitrogen dioxide, a component of cigarette smoke, has been shown to induce alveolar epithelial cell apoptosis in vitro. It is hypothesised that exposure of rats to nitrogen dioxide may result in increased alveolar septal cell apoptosis in vivo with ensuing emphysema—that is, airspace enlargement and loss of alveolar walls. Methods: Fischer 344 rats were exposed to 10 ppm nitrogen dioxide for 3, 7, 21 days or 21 days followed by 28 days at room air. Age-matched control rats were exposed to room air for 3, 21 or 49 days. Lungs fixed at 20 cm fluid column, embedded in paraffin wax, glycol methacrylate and araldite, were analysed by design-based stereology. Alveolar septal cell apoptosis (transferase dUTP nick end labelling assay, active caspase 3) and proliferation (Ki-67), airspace enlargement, total alveolar surface area, and absolute alveolar septal volume as well as the ultrastructural composition of the alveolar wall were quantified. Results: Nitrogen dioxide resulted in an eightfold increase in alveolar septal cell apoptosis at day 3 and a 14fold increase in proliferation compared with age-matched controls. Airspace enlargement, indicated by a 20% increase in mean airspace chord length, was evident by day 7 but was not associated with loss of alveolar walls. By contrast, nitrogen dioxide resulted in an increase in the total surface area and absolute volume of alveolar walls comprising all compartments. The ratio of collagen to elastin, however, was reduced at day 21. Lungs exposed to nitrogen dioxide for 21 days exhibited quantitative structural characteristics as seen in control lungs on day 49. Conclusions: Nitrogen dioxide exposure of rats results in increased alveolar septal cell turnover leading to accelerated lung growth, which is associated with an imbalance in the relative composition of the extracellular matrix, but fails to induce emphysema.
منابع مشابه
Nitrogen dioxide induces apoptosis and proliferation but not emphysema in rat lungs.
BACKGROUND Apoptosis of alveolar septal cells has been linked to emphysema formation. Nitrogen dioxide, a component of cigarette smoke, has been shown to induce alveolar epithelial cell apoptosis in vitro. It is hypothesised that exposure of rats to nitrogen dioxide may result in increased alveolar septal cell apoptosis in vivo with ensuing emphysema-that is, airspace enlargement and loss of al...
متن کاملHomocysteine intracerebroventricular injection induces apoptosis in the Substantia Nigra cells and Parkinson like behavior in rat
Parkinson's disease is a degenerative disorder of the central nervous system. The motor symptoms of Parkinson's disease result from the death of dopamine-generating cells in the substantia nigra, a region of the midbrain the cause of this cell death is unknown. Homocysteine (Hcy) is a non-protein amino acid. It is a homologue of the amino acid cysteine. The elevated levels of homocysteine in p...
متن کاملGallic Acid Inhibits Proliferation and Induces Apoptosis in Lymphoblastic Leukemia Cell Line (C121)
AbstractLeukemia is known as the world’s fifth most prevalent cancer. New cytotoxic drugs have created considerable progress in the treatment, but side effects are still the important cause of mortality. Plant derivatives have been recently considered as important sources for the treatment of various diseases, including cancer. Gallic acid (GA) is a polyhydroxyphenolic compound with a wide rang...
متن کاملCorrelation of lung surface area to apoptosis and proliferation in human emphysema.
Pulmonary emphysema is associated with alterations in matrix proteins and protease activity. These alterations may be linked to programmed cell death by apoptosis, potentially influencing lung architecture and lung function. To evaluate apoptosis in emphysema, lung tissue was analysed from 10 emphysema patients and six individuals without emphysema (normal). Morphological analysis revealed alve...
متن کاملPara-nonylphenol Toxicity Induces Oxidative Stress and Arrests the Cell Cycle in Mesenchymal Stem Cells of Bone Marrow
Background: The mechanism of para-nonylphenol (PNP) reducing the proliferation and differentiation of bone marrow mesenchymal stem cells (MSCs) is not known. The present study was designed to investigate the mechanism. Methods: MSCs were extracted under sterile condition from Wistar rat and cultured in DMEM, containing 15 % FBS and penicillin/streptomycin until the 3rd passage, then cells we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007